простейшая схема конвейера

вебасто транспортер т5 предохранитель

Наклонная камера — неотъемлемая часть системы, которая размещается посередине между жаткой и молотилкой комбайна. Главная ее задача — доставка травы, которую скосили, фиксация жатки, ее привода. Как правило, после длительного использования камеры наклонного типа, ее детали изнашиваются. Купить новые запчасти можно на сайте компании «ПрофАгро».

Простейшая схема конвейера замена лобового стекла транспортер т5

Простейшая схема конвейера

По этой простой причине постоянно разрабатываются все новые типы грузонесущих органов. В частности важно создавать высокопрочные термоустойчивые детали. К примеру, нужно увеличивать срок эксплуатации роликов, которые постоянно выходят их строя.

Можно говорить о том, что работа ленточного конвейера считается довольно дешевой. Если перемещать груз на расстояние до 30 км при помощи ЛК, то это будет куда экономичнее, нежели делать это автомобильным транспортом. Ленточный конвейер — это транспортирующий механизм непрерывного действия, в котором грузонесущий и тяговый орган представлен замкнутой бесконечной гибкой лентой.

Лента движется благодаря силе трения ленты и приводного барабана, а вес конструкции и груза равномерно распределяется по стационарным роликоопорам. B горной промышленности ленточными ковейерами перемещают полезные ископаемые и породы от места добычи по выработкам горных предприятий и для подъема их на поверхность с последующей транспортировкой к обогатительным фабрикам или на погрузочную площадку внешнего транспорта, a породу — в отвал.

Ленточными конвейерами можно доставлять полезные ископаемые от горных предприятий непосредственно к потребителю. Это может быть уголь для теплоэнергоцентрали или руда на металлургический завод. Простейшая кинематическая схема ленточного конвейера выглядит следующим образом :. Ленточный конвейер общего назначения построен на принципе, когда бесконечная гибкая лента, с ее рабочей и холостой ветвями, опираясь на роликовые опоры, огибает приводной и натяжной барабаны, расположенные по концам конвейера.

В конструкции коротких конвейеров, которые используют для транспортировки штучных грузов, часто рабочая ветвь ленты скользит по деревянному или металлическому настилу. Лента приводится в движение приводным барабаном. Необходимое натяжение сбегающая ветвь ленты получает от натяжного барабана с помощью натяжного устройства. Для погрузки сыпучего материала, который подлежит перемещению, используются загрузочная воронка, устанавливаемая обычно у концевого барабана в начале конвейера.

Материал разгружается с ленты двумя способами, это может быть разгрузка с приводного барабана и называется концевой или промежуточной, для чего используют передвижную разгрузочную тележку, либо стационарные плужковые сбрасыватели. Для направления потока доставленного к месту разгрузки материала используется разгрузочная коробка. Чтобы очистить ленту с рабочей стороны от остатков груза устанавливают щетки из капрона или резины, либо неподвижный скребок.

Установка очистного устройства крайне необходимо в тех случаях, когда возможно прилипание остатков транспортируемого материала на роликах холостой ветви и образование трудноудаляемой неровной корки, что приводит к неравномерному вращению роликов и ускоренному износу ленты.

Когда возникает необходимость очистки внутренней поверхности холостой ветви ленты от случайно попавших остатков груза, в районе натяжного барабана устанавливается дополнительный сбрасывающий скребок. Очищать ленту после приводного барабана необходимо с целью предотвращения осыпания прилипших частиц материала от вибрации, в результате чего под опорами холостой ветви возникают завалы, затрудняющие эксплуатацию конвейерной линии. Составляющими звеньями привода ленточного конвейера являются электродвигатель 1 , зубчатоременная передача 2 , редуктор 3 , зубчатая муфта 4 , приводной барабан 5.

Кинематическая схема привода ленточного конвейера построена на том, что асинхронный электродвигатель вращает с помощью ременной передачи быстроходный входящий вал цилиндрического редуктора. Входящий вал редуктора вращение передает на промежуточный вал при помощи косозубой передачи. В свою очередь промежуточный вал при помощи прямозубой зубчатой передачи вращает выходной вал редуктора. С помощью компенсирующей зубчатой муфты крутящий момент от выходного вала редуктора передается к валу приводного барабана конвейера.

Конструкция конвейера полностью зависит от типа применяемых лент. Если сравнить ленточный конвейер со стальной лентой одинакового назначения с конвейером общего назначения, схема будет отличаться от последних теми элементами конструкции, которые зависят от повышенной жесткости ленты.

Также будут отличия и в конструкции барабанов у конвейеров со стальной лентой, они будут иметь большие размеры, ролики будут выполняться в форме дисков на одной оси, и другие отличия. Когда конвейеры с проволочными лентами становится возможным применение опор, состоящих из горизонтальных роликов.

Электрическая схема ленточного конвейера имеет определенные особенности, которые связаны с тем, что у конвейеров привод, порой состоит из одинаковых электродвигателей два и более , и требуется согласованное вращение этих электродвигателей, а соединить их каким-то механическим валом не предоставляется возможности.

Для решения этой задачи применяют электрическую связь роторов асинхронных АД или синхронных СД двигателей, которую называют электрическим валом. I appreciate, result in I discovered just what I used to be having a look for. You have ended my 4 day long hunt! God Bless you man. Have a great day. I know this is kind of off topic but I was wondering which blog platform are you using for this website? I would be fantastic if you could point me in the direction of a good platform.

Hi, I do think this is an excellent site. Money and freedom is the greatest way to change, may you be rich and continue to help other people. Привод ленточного конвейера рис. Конвейерная лента приводится в движение посредством трения между лентой и приводным барабаном. Для увеличения угла обхвата барабана лентой применяется специальный отклоняющий барабан. Привод устанавливается на раме.

Схема привода ленточного конвейера: 1 — двигатель; 2,4 — муфты; 3 — редуктор; 5 — приводной барабан. Приводной и натяжной барабаны обычно устанавливаются на противоположных концах ленточного конвейера, а в местах изменения направления размещаются отклоняющие барабаны см.

По числу приводных барабанов различаются приводы одно-, двух- и многобарабанные рис. Наиболее простым и распространенным является однобарабанный привод с одним или двумя двигателями. Однако в тяжело нагруженных конвейерах большой длины силы сопротивления движению ленты достигают значительных величин и для их преодоления необходимо создавать очень большое натяжение тягового элемента ленты.

Это приводит к существенному увеличению массы и стоимости ленты, привода и других элементов конвейера. Поэтому применение однобарабанного привода в этом случае становится экономически невыгодным, а иногда и невозможным. Схемы конвейеров с различными видами приводов: а — однобарабанным; б — двухбарабанным; в — трехбарабанным. Схемы расположения приводов конвейеров: а — однодвигательного; б — двухдвигательного; в , г — трехдвигательного; д — многодвигательного с прямолинейными промежуточными приводами; П — привод; Д — двигатель.

Одним из вариантов решения этой проблемы является разделение длинного конвейера на несколько коротких конвейеров, расположенных последовательно. Однако при этом возникает необходимость передачи груза с одного конвейера на другой, что требует установки дополнительных разгрузочных, загрузочных и очистительных устройств, а в ряде случаев и недопустимо.

Наиболее целесообразным решением считается применение многобарабанного привода, то есть установка по длине конвейера нескольких согласованно работающих приводных устройств с индивидуальными электродвигателями рис. В этом случае вся трасса конвейера разбивается на отдельные участки по числу установленных приводных устройств, и каждый привод воспринимает нагрузку только от «своего» участка трассы.

Такая система значительно снижает натяжение ленты. Барабаны изготавливают сварными из стали Ст3 или литыми из серого чугуна рис. Для улучшения условий сцепления ленты с приводным барабаном его футеруют облицовывают резиной или другим фрикционным материалом см. Барабаны для конвейеров с резинотканевой лентой: а — приводной; б — хвостовой и отклоняющий; в — футерованный резиной; г — вариант крепления облицовки к барабану.

При выборе диаметра барабана следует учитывать два взаимоисключающих требования. С одной стороны, желательно иметь барабан минимального диаметра с целью снижения габаритов и массы конвейера; с другой стороны, с уменьшением диаметра барабана ухудшаются условия работы ленты — в ней растут напряжения изгиба.

Диаметры натяжного D бн и отклоняющего D бо барабанов принимаются соответственно равными. Полученные значения диаметров барабанов округляются до ближайших стандартных значений в соответствии с ГОСТ , , , , , , , , , , , , и мм. Выбранный диаметр приводного барабана D бп мм проверяют по давлению ленты на поверхность барабана р л МПа :.

Если давление р л выше допускаемого значения, то следует увеличить один или несколько параметров: диаметр барабана D бп , ширину ленты B , угол обхвата a, число приводов. Натяжное устройство предназначено для создания и поддержания в заданных пределах натяжения ленты, обеспечивающего необходимое сцепление ленты с приводным барабаном и ограничивающего её провисание между роликоопорами. Как правило, натяжное устройство устанавливают на участках конвейера с минимальным натяжением ленты, что позволяет снизить усилие натяжения и, следовательно, уменьшить массу и габариты устройства.

Однако в конвейерах большой длины натяжное устройство и привод часто объединяют в один узел, что обусловлено удобством технического обслуживания и ремонта. По принципу действия натяжные устройства разделяются на грузовые, механические, гидравлические и пневматические. В грузовом хвостовом натяжном устройстве рис. На рис.

К недостаткам грузовых устройств относят большие габариты и большую массу груза, поэтому их обычно применяют для стационарных, мощных конвейеров большой длины. В механическом натяжном устройстве натяжение ленты производится, как правило, вручную с помощью какого-либо механизма передачи винт — гайка, реечного механизма, лебедки и т. Его недостатком является необходимость периодического регулирования натяжения ленты по мере её вытяжки, а достоинством — простота конструкции и компактность.

На конвейерах небольшой и средней длины до 80 м часто применяются винтовые натяжные устройства рис. Гидравлические и пневматические натяжные устройства на металлургических предприятиях практически не применяются. Усилие F нат , которое должно обеспечить натяжное устройство для перемещения натяжного барабана, при параллельных ветвях ленты равно.

Направление движения ленты изменяется с помощью отклоняющих устройств : концевых оборотных барабанов, отклоняющих барабанов и роликовых батарей. Отклоняющие барабаны применяются для холостой ветви конвейера, а также для рабочей ветви с однороликовыми опорами. Для конвейеров с желобчатыми роликоопорами изменение направления движения ленты осуществляется при помощи роликовой батареи см.

Имеется несколько методов сокращения приостановок конвейера, возникающих из-за задержек выполнения условных переходов. В данном разделе обсуждаются четыре простые схемы, используемые во время компиляции. В этих схемах прогнозирование направления перехода выполняется статически, то есть прогнозируемое направление перехода фиксируется для каждой команды условного перехода на все время выполнения программы. После обсуждения этих схем мы исследуем вопрос о правильности предсказания направления перехода компиляторами, поскольку все эти схемы основаны на такой технологии.

В следующей главе мы рассмотрим более мощные схемы, используемые компиляторами такие, например, как разворачивание циклов , которые уменьшают частоту команд условных переходов при реализации циклов, а также динамические, аппаратно реализованные схемы прогнозирования. Простейшая схема обработки команд условного перехода заключается в замораживании или подавлении операций в конвейере, путем блокировки выполнения любой команды, следующей за командой условного перехода, до тех пор, пока не станет известным направление перехода.

Рисунок 14 отражал именно такой подход. Привлекательность такого решения заключается в его простоте. Более хорошая и не на много более сложная схема состоит в том, чтобы прогнозировать условный переход как невыполняемый. При этом аппаратура должна просто продолжать выполнение программы, как если бы условный переход вовсе не выполнялся. В этом случае необходимо позаботиться о том, чтобы не изменить состояние машины до тех пор, пока направление перехода не станет окончательно известным.

В некоторых машинах эта схема с невыполняемыми по прогнозу условными переходами реализована путем продолжения выборки команд, как если бы условный переход был обычной командой. Поведение конвейера выглядит так, как будто ничего необычного не происходит.

Однако, если условный переход на самом деле выполняется, то необходимо просто очистить конвейер от команд, выбранных вслед за командой условного перехода и заново повторить выборку команд рисунок Альтернативная схема прогнозирует переход как выполняемый. Как только команда условного перехода декодирована и вычислен целевой адрес перехода, мы предполагаем, что переход выполняемый, и осуществляем выборку команд и их выполнение, начиная с целевого адреса.

Если мы не знаем целевой адрес перехода раньше, чем узнаем окончательное направление перехода, у этого подхода нет никаких преимуществ. Если бы условие перехода зависело от непосредственно предшествующей команды, то произошла бы приостановка конвейера из-за конфликта по данным для регистра, который является условием перехода, и мы бы узнали сначала целевой адрес.

В таких случаях прогнозировать переход как выполняемый было бы выгодно. Дополнительно в некоторых машинах особенно в машинах с устанавливаемыми по умолчанию кодами условий или более мощным а потому и более медленным набором условий перехода целевой адрес перехода известен раньше окончательного направления перехода, и схема прогноза перехода как выполняемого имеет смысл. Четвертая схема, которая используется в некоторых машинах называется "задержанным переходом".

В задержанном переходе такт выполнения с задержкой перехода длиною n есть:. Команды 1 - n находятся в слотах временных интервалах задержанного перехода. Задача программного обеспечения заключается в том, чтобы сделать команды, следующие за командой перехода, действительными и полезными. Аппаратура гарантирует реальное выполнение этих команд перед выполнением собственно перехода. Здесь используются несколько приемов оптимизации.

На рисунке 17, а показаны три случая, при которых может планироваться задержанный переход. В верхней части рисунка для каждого случая показана исходная последовательность команд, а в нижней части - последовательность команд, полученная в результате планирования.

В случае а слот задержки заполняется независимой командой, находящейся перед командой условного перехода. Это наилучший выбор. Стратегии b и c используются, если применение стратегии a невозможно. В последовательностях команд для случаев b и c использование содержимого регистра R1 в качестве условия перехода препятствует перемещению команды ADD которая записывает результат в регистр R1 за команду перехода.

В случае b слот задержки заполняется командой, находящейся по целевому адресу команды перехода. Обычно такую команду приходится копировать, поскольку к ней возможны обращения и из других частей программы. Стратегии b отдается предпочтение, когда с высокой вероятностью переход является выполняемым, например, если это переход на начало цикла. Наконец, слот задержки может заполняться командой, находящейся между командой невыполняемого перехода и командой, находящейся по целевому адресу, как в случае c.

Чтобы подобная оптимизация была законной, необходимо, чтобы можно было все-таки выполнить команду SUB, если переход пойдет не по прогнозируемому направлению. При этом мы предполагаем, что команда SUB выполнит ненужную работу, но вся программа при этом будет выполняться корректно. Это, например, может быть в случае, если регистр R4 используется только для временного хранения промежуточных результатов вычислений, когда переход выполняется не по прогнозируемому направлению.

Рисунок 17, б показывает различные ограничения для всех этих схем планирования условных переходов, а также ситуации, в которых они дают выигрыш. Компилятор должен соблюдать требования при подборе подходящей команды для заполнения слота задержки. Если такой команды не находится, слот задержки должен заполняться пустой операцией. Планирование задержанных переходов осложняется 1 наличием ограничений на команды, размещение которых планируется в слотах задержки и 2 необходимостью предсказывать во время компиляции, будет ли условный переход выполняемым или нет.

Рисунок 5. Он показывает, что больше половины слотов задержки переходов оказываются заполненными. Высокий процент использования заполненных слотов объясняется тем, что примерно половина из них заполняется командами, предшествовавшими команде условного перехода стратегия a , выполнение которых необходимо независимо от того, выполняется ли переход, или нет.

Требования к переставляемым командам при планировании задержанного перехода. Имеются небольшие дополнительные затраты аппаратуры на реализацию задержанных переходов. Из-за задержанного эффекта условных переходов, для корректного восстановления состояния в случае появления прерывания нужны несколько счетчиков команд один плюс длина задержки. Выполнение переставляемой команды должно быть корректным, даже если переход не выполняется Может потребоваться копирование команды.

Статическое прогнозирование условных переходов: использование технологии компиляторов. Имеются два основных метода, которые можно использовать для статического предсказания переходов: метод исследования структуры программы и метод использования информации о профиле выполнения программы, который собран в результате предварительных запусков программы.

Использование структуры программы достаточно просто: в качестве исходной точки можно предположить, например, что все идущие назад по программе переходы являются выполняемыми, а идущие вперед по программе - невыполняемыми.

Однако эта схема не очень эффективна для большинства программ. Основываясь только на структуре программы просто трудно сделать лучший прогноз. Альтернативная техника для предсказания переходов основана на информации о профиле выполнения программы, собранной во время предыдущих прогонов. Ключевым моментом, который делает этот подход заслуживающим внимания, является то, что поведение переходов при выполнении программы часто повторяется, то есть каждый отдельный переход в программе часто оказывается смещенным в одну из сторон: он либо выполняемый, либо невыполняемый.

Проведенные многими авторами исследования показывают достаточно успешное предсказания переходов с использованием этой стратегии. В следующей главе мы рассмотрим использование схем динамического прогнозирования, основанного на поведении программы во время ее работы. Мы также рассмотрим несколько методов планирования кода во время компиляции. Эта методика требует статического предсказания переходов, таким образом идеи этого раздела являются важными.

П роблемы реализации точного прерывания в конвейере. Обработка прерываний в конвейерной машине оказывается более сложной из-за того, что совмещенное выполнение команд затрудняет определение возможности безопасного изменения состояния машины произвольной командой. В конвейерной машине команда выполняется по этапам, и ее завершение осуществляется через несколько тактов после выдачи для выполнения. Еще в процессе выполнения отдельных этапов команда может изменить состояние машины.

Тем временем возникшее прерывание может вынудить машину прервать выполнение еще не завершенных команд. Как и в неконвейерных машинах двумя основными проблемами при реализации прерываний являются: 1 прерывания возникают в процессе выполнения некоторой команды; 2 необходим механизм возврата из прерывания для продолжения выполнения программы. Например, для нашего простейшего конвейера прерывание по отсутствию страницы виртуальной памяти при выборке данных не может произойти до этапа выборки из памяти MEM.

В момент возникновения этого прерывания в процессе обработки уже будут находиться несколько команд. Поскольку подобное прерывание должно обеспечить возврат для продолжения программы и требует переключения на другой процесс операционную систему , необходимо надежно очистить конвейер и сохранить состояние машины таким, чтобы повторное выполнение команды после возврата из прерывания осуществлялось при корректном состоянии машины. Обычно это реализуется путем сохранения адреса команды PC , вызвавшей прерывание.

Если выбранная после возврата из прерывания команда не является командой перехода, то сохраняется обычная последовательность выборки и обработки команд в конвейере. Если же это команда перехода, то мы должны оценить условие перехода и в зависимости от выбранного направления начать выборку либо по целевому адресу команды перехода, либо следующей за переходом команды.

Когда происходит прерывание, для корректного сохранения состояния машины необходимо выполнить следующие шаги:. Если используются механизмы задержанных переходов, состояние машины уже невозможно восстановить с помощью одного счетчика команд, поскольку в процессе восстановления команды в конвейере могут оказаться вовсе не последовательными.

В частности, если команда, вызвавшая прерывание, находилась в слоте задержки перехода и переход был выполненным, то необходимо заново повторить выполнение команд из слота задержки плюс команду, находящуюся по целевому адресу команды перехода. Сама команда перехода уже выполнилась и ее повторения не требуется.

При этом адреса команд из слота задержки перехода и целевой адрес команды перехода естественно не являются последовательными. Поэтому необходимо сохранять и восстанавливать несколько счетчиков команд, число которых на единицу превышает длину слота задержки. Это выполняется на третьем шаге обработки прерывания. После обработки прерывания специальные команды осуществляют возврат из прерывания путем перезагрузки счетчиков команд и инициализации потока команд.

Если конвейер может быть остановлен так, что команды, непосредственно предшествовавшие вызвавшей прерывание команде, завершаются, а следовавшие за ней могут быть заново запущены для выполнения, то говорят, что конвейер обеспечивает точное прерывание. В идеале команда, вызывающая прерывание, не должна менять состояние машины, и для корректной обработки некоторых типов прерываний требуется, чтобы команда, вызывающая прерывание, не имела никаких побочных эффектов. Для других типов прерываний, например, для прерываний по исключительным ситуациям плавающей точки, вызывающая прерывание команда на некоторых машинах записывает свои результаты еще до того момента, когда прерывание может быть обработано.

В этих случаях аппаратура должна быть готовой для восстановления операндов-источников, даже если местоположение результата команды совпадает с местоположением одного из операндов-источников. Поддержка точных прерываний во многих системах является обязательным требованием, а в некоторых системах была бы весьма желательной, поскольку она упрощает интерфейс операционной системы.

Как минимум в машинах со страничной организацией памяти или с реализацией арифметической обработки в соответствии со стандартом IEEE средства обработки прерываний должны обеспечивать точное прерывание либо целиком с помощью аппаратуры, либо с помощью некоторой поддержки со стороны программных средств. Необходимость реализации в машине точных прерываний иногда оспаривается из-за некоторых проблем, которые осложняют повторный запуск команд.

Повторный запуск сложен из-за того, что команды могут изменить состояние машины еще до того, как они гарантировано завершают свое выполнение иногда гарантированное завершение команды называется фиксацией команды или фиксацией результатов выполнения команды. Поскольку команды в конвейере могут быть взаимозависимыми, блокировка изменения состояния машины может оказаться непрактичной, если конвейер продолжает работать.

Таким образом, по мере увеличения степени конвейеризации машины возникает необходимость отката любого изменения состояния, выполненного до фиксации команды. К счастью, в простых конвейерах, подобных рассмотренному, эти проблемы не возникают. На рисунке 19 показаны ступени рассмотренного конвейера и причины прерываний, которые могут возникнуть на соответствующих ступенях при выполнении команд.

Ошибка при обращении к странице памяти при выборке команды; невыровненное обращение к памяти; нарушение защиты памяти. Ошибка при обращении к странице памяти при выборке данных; невыровненное обращение к памяти; нарушение защиты памяти.

О бработка многотактных операций и механизмы обходов в длинных конвейерах. В рассмотренном нами конвейере стадия выполнения команды EX составляла всего один такт, что вполне приемлемо для целочисленных операций. Однако для большинства операций плавающей точки было бы непрактично требовать, чтобы все они выполнялись за один или даже за два такта.

Это привело бы к существенному увеличению такта синхронизации конвейера, либо к сверхмерному увеличению количества оборудования объема логических схем для реализации устройств плавающей точки. Проще всего представить, что команды плавающей точки используют тот же самый конвейер, что и целочисленные команды, но с двумя важными изменениями. Во-первых, такт EX может повторяться многократно столько раз, сколько необходимо для выполнения операции.

Во-вторых, в процессоре может быть несколько функциональных устройств, реализующих операции плавающей точки. При этом могут возникать приостановки конвейера, если выданная для выполнения команда либо вызывает структурный конфликт по функциональному устройству, которое она использует, либо существует конфликт по данным. Целочисленное устройство обрабатывает все команды загрузки и записи в память при работе с двумя наборами регистров целочисленных и с плавающей точкой , все целочисленные операции за исключением команд умножения и деления и все команды переходов.

Если предположить, что стадии выполнения других функциональных устройств неконвейерные, то рисунок 20 показывает структуру такого конвейера. Поскольку стадия EX является неконвейерной, никакая команда, использующая функциональное устройство, не может быть выдана для выполнения до тех пор, пока предыдущая команда не покинет ступень EX. Более того, если команда не может поступить на ступень EX, весь конвейер за этой командой будет приостановлен. В действительности промежуточные результаты возможно не используются циклически ступенью EX, как это показано на рисунке 20, и ступень EX имеет задержки длительностью более одного такта.

Мы можем обобщить структуру конвейера плавающей точки, допустив конвейеризацию некоторых ступеней и параллельное выполнение нескольких операций. Чтобы описать работу такого конвейера, мы должны определить задержки функциональных устройств, а также скорость инициаций или скорость повторения операций. Это скорость, с которой новые операции данного типа могут поступать в функциональное устройство.

Например, предположим, что имеют место следующие задержки функциональных устройств и скорости повторения операций:. На рисунке 21 представлена структура подобного конвейера. Имеется несколько различных аспектов обнаружения конфликтов и организации ускоренной пересылки данных в конвейерах, подобных представленному на рисунке Прежде чем представить общее решение для реализации схем обнаружения конфликтов, рассмотрим вторую и третью проблемы.

Если предположить, что файл регистров с ПТ имеет только один порт записи, то последовательность операций с ПТ, а также операция загрузки ПТ совместно с операциями ПТ может вызвать конфликты по порту записи в регистровый файл. Рассмотрим последовательность команд, представленную на рисунке В такте 10 все три команды достигнут ступени WB и должны произвести запись в регистровый файл. При наличии только одного порта записи в регистровый файл машина должна обеспечить последовательное завершение команд.

Этот единственный регистровый порт является источником структурных конфликтов. Чтобы решить эту проблему, можно увеличить количество портов в регистровом файле, но такое решение может оказаться неприемлемым, поскольку эти дополнительные порты записи скорее всего будут редко использоваться.

Однако в установившемся состоянии максимальное количество необходимых портов записи равно 1. Поэтому в реальных машинах разработчики предпочитают отслеживать обращения к порту записи в регистры и рассматривать одновременное к нему обращение как структурный конфликт. Имеется два способа для обхода этого конфликта.

Первый заключается в отслеживании использования порта записи на ступени ID конвейера и приостановке выдачи команды как при структурном конфликте. Схема обнаружения такого конфликта обычно реализуется с помощью сдвигового регистра. Альтернативная схема предполагает приостановку конфликтующей команды, когда она пытается попасть на ступень MEM конвейера. Преимуществом такой схемы является то, что она не требует обнаружения конфликта до входа на ступень MEM, где это легче сделать.

Однако подобная реализация усложняет управление конвейером, поскольку приостановки в этом случае могут возникать в двух разных местах конвейера. Другой проблемой является возможность конфликтов типа WAW.

Можно рассмотреть тот же пример, что и на рисунке Если бы команда LD была выдана на один такт раньше и имела в качестве месторасположения результата регистр F2, то возник бы конфликт типа WAW, поскольку эта команда выполняла бы запись в регистр F2 на один такт раньше команды ADDD.

Имеются два способа обработки этого конфликта типа WAW. Второй подход заключается в подавлении результата операции сложения при обнаружении конфликта и изменении управления таким образом, чтобы команда сложения не записывала свой результат. Тогда команда LD может выдаваться для выполнения сразу же. Поскольку такой конфликт является редким, обе схемы будут работать достаточно хорошо. В любом случае конфликт может быть обнаружен на ранней стадии ID, когда команда LD выдается для выполнения. Таким образом, для обнаружения возможных конфликтов необходимо рассматривать конфликты между командами ПТ, а также конфликты между командами ПТ и целочисленными командами.

Это упрощение управления конвейером является дополнительным преимуществом поддержания отдельных регистровых файлов для хранения целочисленных данных и данных с ПТ. Главное преимущество заключается в удвоении общего количества регистров и увеличении пропускной способности без увеличения числа портов в каждом наборе. Если предположить, что конвейер выполняет обнаружение всех конфликтов на стадии ID, перед выдачей команды для выполнения в функциональные устройства должны быть выполнены три проверки:.

Хотя логика обнаружения конфликтов для многотактных операций ПТ несколько более сложная, концептуально она не отличается от такой же логики для целочисленного конвейера. То же самое касается логики для ускоренной пересылки данных. Если происходит такое совпадение, для пересылки данных разрешается прием по соответствующему входу мультиплексора.

Многотактные операции ПТ создают также новые проблемы для механизма прерывания. Другая проблема, связанная с реализацией команд с большим временем выполнения, может быть проиллюстрирована с помощью следующей последовательности команд:. Эта последовательность команд выглядит очень просто. В ней отсутствуют какие-либо зависимости. Однако она приводит к появлению новых проблем из-за того, что выданная раньше команда может завершиться после команды, выданной для выполнения позже.

Этот эффект является типичным для конвейеров команд с большим временем выполнения и называется внеочередным завершением команд out-of-order completion. Тогда, например, если команда DIVF вызовет арифметическое прерывание после завершения команды ADDF, мы не сможем реализовать точное прерывание на уровне аппаратуры. В действительности, поскольку команда ADDF меняет значение одного из своих операндов, невозможно даже с помощью программных средств восстановить состояние, которое было перед выполнением команды DIVF.

Имеются четыре возможных подхода для работы в условиях внеочередного завершения команд. Первый из них просто игнорирует проблему и предлагает механизмы неточного прерывания. Этот подход использовался в х и х годах и все еще применяется в некоторых суперкомпьютерах, в которых некоторые классы прерываний запрещены или обрабатываются аппаратурой без остановки конвейера.

Такой подход трудно использовать в современных машинах при наличии концепции виртуальной памяти и стандарта на операции с плавающей точкой IEEE, которые требуют реализации точного прерывания путем комбинации аппаратных и программных средств. В некоторых машинах эта проблема решается путем введения двух режимов выполнения команд: быстрого, но с возможно не точными прерываниями, и медленного, гарантирующего реализацию точных прерываний. Второй подход заключается в буферизации результатов операции до момента завершения выполнения всех команд, предшествовавших данной.

В некоторых машинах используется этот подход, но он становится все более дорогостоящим, если отличия во времени выполнения разных команд велики, поскольку становится большим количество результатов, которые необходимо буферизовать. Более того, результаты из этой буферизованной очереди необходимо пересылать для обеспечения продолжения выдачи новых команд. Это требует большого количества схем сравнения и многовходовых мультиплексоров. Имеются две вариации этого основного подхода.

Буфер истории отслеживает первоначальные значения регистров. Если возникает прерывание и состояние машины необходимо откатить назад до точки, предшествовавшей некоторым завершившимся вне очереди командам, то первоначальное значение регистров может быть восстановлено из этого буфера истории. Подобная методика использовалась также при реализации автоинкрементной и автодекрементной адресации в машинах типа VAX. Другой подход называется буфером будущего future file.

Этот буфер хранит новые значения регистров. Когда все предшествующие команды завершены, основной регистровый файл обновляется значениями из этого буфера. При прерывании основной регистровый файл хранит точные значения регистров, что упрощает организацию прерывания. В следующей главе будут рассмотрены некоторые расширения этой идеи. Третий используемый метод заключается в том, чтобы разрешить в ряде случаев неточные прерывания, но при этом сохранить достаточно информации, чтобы подпрограмма обработки прерывания могла выполнить точную последовательность прерывания.

Это предполагает наличие информации о находившихся в конвейере командах и их адресов. Тогда после обработки прерывания, программное обеспечение завершает выполнение всех команд, предшествовавших последней завершившейся команде, а затем последовательность может быть запущена заново.

АВТОМАТИКА ДЛЯ ЭЛЕВАТОРОВ

На сегодняшний день популярность ленточных конвейеров постоянно растет. По этой простой причине постоянно разрабатываются все новые типы грузонесущих органов. В частности важно создавать высокопрочные термоустойчивые детали. К примеру, нужно увеличивать срок эксплуатации роликов, которые постоянно выходят их строя. Можно говорить о том, что работа ленточного конвейера считается довольно дешевой. Если перемещать груз на расстояние до 30 км при помощи ЛК, то это будет куда экономичнее, нежели делать это автомобильным транспортом.

Ленточный конвейер — это транспортирующий механизм непрерывного действия, в котором грузонесущий и тяговый орган представлен замкнутой бесконечной гибкой лентой. Лента движется благодаря силе трения ленты и приводного барабана, а вес конструкции и груза равномерно распределяется по стационарным роликоопорам. B горной промышленности ленточными ковейерами перемещают полезные ископаемые и породы от места добычи по выработкам горных предприятий и для подъема их на поверхность с последующей транспортировкой к обогатительным фабрикам или на погрузочную площадку внешнего транспорта, a породу — в отвал.

Ленточными конвейерами можно доставлять полезные ископаемые от горных предприятий непосредственно к потребителю. Это может быть уголь для теплоэнергоцентрали или руда на металлургический завод. Простейшая кинематическая схема ленточного конвейера выглядит следующим образом :. Ленточный конвейер общего назначения построен на принципе, когда бесконечная гибкая лента, с ее рабочей и холостой ветвями, опираясь на роликовые опоры, огибает приводной и натяжной барабаны, расположенные по концам конвейера.

В конструкции коротких конвейеров, которые используют для транспортировки штучных грузов, часто рабочая ветвь ленты скользит по деревянному или металлическому настилу. Лента приводится в движение приводным барабаном. Необходимое натяжение сбегающая ветвь ленты получает от натяжного барабана с помощью натяжного устройства. Для погрузки сыпучего материала, который подлежит перемещению, используются загрузочная воронка, устанавливаемая обычно у концевого барабана в начале конвейера.

Материал разгружается с ленты двумя способами, это может быть разгрузка с приводного барабана и называется концевой или промежуточной, для чего используют передвижную разгрузочную тележку, либо стационарные плужковые сбрасыватели. Для направления потока доставленного к месту разгрузки материала используется разгрузочная коробка. Чтобы очистить ленту с рабочей стороны от остатков груза устанавливают щетки из капрона или резины, либо неподвижный скребок.

Установка очистного устройства крайне необходимо в тех случаях, когда возможно прилипание остатков транспортируемого материала на роликах холостой ветви и образование трудноудаляемой неровной корки, что приводит к неравномерному вращению роликов и ускоренному износу ленты. Когда возникает необходимость очистки внутренней поверхности холостой ветви ленты от случайно попавших остатков груза, в районе натяжного барабана устанавливается дополнительный сбрасывающий скребок.

Очищать ленту после приводного барабана необходимо с целью предотвращения осыпания прилипших частиц материала от вибрации, в результате чего под опорами холостой ветви возникают завалы, затрудняющие эксплуатацию конвейерной линии. Составляющими звеньями привода ленточного конвейера являются электродвигатель 1 , зубчатоременная передача 2 , редуктор 3 , зубчатая муфта 4 , приводной барабан 5.

Кинематическая схема привода ленточного конвейера построена на том, что асинхронный электродвигатель вращает с помощью ременной передачи быстроходный входящий вал цилиндрического редуктора. Входящий вал редуктора вращение передает на промежуточный вал при помощи косозубой передачи.

В свою очередь промежуточный вал при помощи прямозубой зубчатой передачи вращает выходной вал редуктора. С помощью компенсирующей зубчатой муфты крутящий момент от выходного вала редуктора передается к валу приводного барабана конвейера. Конструкция конвейера полностью зависит от типа применяемых лент. Если сравнить ленточный конвейер со стальной лентой одинакового назначения с конвейером общего назначения, схема будет отличаться от последних теми элементами конструкции, которые зависят от повышенной жесткости ленты.

Также будут отличия и в конструкции барабанов у конвейеров со стальной лентой, они будут иметь большие размеры, ролики будут выполняться в форме дисков на одной оси, и другие отличия. Когда конвейеры с проволочными лентами становится возможным применение опор, состоящих из горизонтальных роликов. Электрическая схема ленточного конвейера имеет определенные особенности, которые связаны с тем, что у конвейеров привод, порой состоит из одинаковых электродвигателей два и более , и требуется согласованное вращение этих электродвигателей, а соединить их каким-то механическим валом не предоставляется возможности.

Для решения этой задачи применяют электрическую связь роторов асинхронных АД или синхронных СД двигателей, которую называют электрическим валом. I appreciate, result in I discovered just what I used to be having a look for. You have ended my 4 day long hunt! God Bless you man. Have a great day. I know this is kind of off topic but I was wondering which blog platform are you using for this website?

I would be fantastic if you could point me in the direction of a good platform. Hi, I do think this is an excellent site. Money and freedom is the greatest way to change, may you be rich and continue to help other people. Привод ленточного конвейера рис.

Конвейерная лента приводится в движение посредством трения между лентой и приводным барабаном. Для увеличения угла обхвата барабана лентой применяется специальный отклоняющий барабан. Привод устанавливается на раме. Схема привода ленточного конвейера: 1 — двигатель; 2,4 — муфты; 3 — редуктор; 5 — приводной барабан. Приводной и натяжной барабаны обычно устанавливаются на противоположных концах ленточного конвейера, а в местах изменения направления размещаются отклоняющие барабаны см.

По числу приводных барабанов различаются приводы одно-, двух- и многобарабанные рис. Наиболее простым и распространенным является однобарабанный привод с одним или двумя двигателями. Однако в тяжело нагруженных конвейерах большой длины силы сопротивления движению ленты достигают значительных величин и для их преодоления необходимо создавать очень большое натяжение тягового элемента ленты. Это приводит к существенному увеличению массы и стоимости ленты, привода и других элементов конвейера.

Поэтому применение однобарабанного привода в этом случае становится экономически невыгодным, а иногда и невозможным. Схемы конвейеров с различными видами приводов: а — однобарабанным; б — двухбарабанным; в — трехбарабанным. Схемы расположения приводов конвейеров: а — однодвигательного; б — двухдвигательного; в , г — трехдвигательного; д — многодвигательного с прямолинейными промежуточными приводами; П — привод; Д — двигатель. Одним из вариантов решения этой проблемы является разделение длинного конвейера на несколько коротких конвейеров, расположенных последовательно.

Однако при этом возникает необходимость передачи груза с одного конвейера на другой, что требует установки дополнительных разгрузочных, загрузочных и очистительных устройств, а в ряде случаев и недопустимо. Наиболее целесообразным решением считается применение многобарабанного привода, то есть установка по длине конвейера нескольких согласованно работающих приводных устройств с индивидуальными электродвигателями рис. В этом случае вся трасса конвейера разбивается на отдельные участки по числу установленных приводных устройств, и каждый привод воспринимает нагрузку только от «своего» участка трассы.

Такая система значительно снижает натяжение ленты. Барабаны изготавливают сварными из стали Ст3 или литыми из серого чугуна рис. Для улучшения условий сцепления ленты с приводным барабаном его футеруют облицовывают резиной или другим фрикционным материалом см.

Барабаны для конвейеров с резинотканевой лентой: а — приводной; б — хвостовой и отклоняющий; в — футерованный резиной; г — вариант крепления облицовки к барабану. При выборе диаметра барабана следует учитывать два взаимоисключающих требования. С одной стороны, желательно иметь барабан минимального диаметра с целью снижения габаритов и массы конвейера; с другой стороны, с уменьшением диаметра барабана ухудшаются условия работы ленты — в ней растут напряжения изгиба.

Диаметры натяжного D бн и отклоняющего D бо барабанов принимаются соответственно равными. Полученные значения диаметров барабанов округляются до ближайших стандартных значений в соответствии с ГОСТ , , , , , , , , , , , , и мм. Выбранный диаметр приводного барабана D бп мм проверяют по давлению ленты на поверхность барабана р л МПа :. Если давление р л выше допускаемого значения, то следует увеличить один или несколько параметров: диаметр барабана D бп , ширину ленты B , угол обхвата a, число приводов.

Натяжное устройство предназначено для создания и поддержания в заданных пределах натяжения ленты, обеспечивающего необходимое сцепление ленты с приводным барабаном и ограничивающего её провисание между роликоопорами. Как правило, натяжное устройство устанавливают на участках конвейера с минимальным натяжением ленты, что позволяет снизить усилие натяжения и, следовательно, уменьшить массу и габариты устройства.

Однако в конвейерах большой длины натяжное устройство и привод часто объединяют в один узел, что обусловлено удобством технического обслуживания и ремонта. По принципу действия натяжные устройства разделяются на грузовые, механические, гидравлические и пневматические.

В грузовом хвостовом натяжном устройстве рис. На рис. К недостаткам грузовых устройств относят большие габариты и большую массу груза, поэтому их обычно применяют для стационарных, мощных конвейеров большой длины. В механическом натяжном устройстве натяжение ленты производится, как правило, вручную с помощью какого-либо механизма передачи винт — гайка, реечного механизма, лебедки и т. Его недостатком является необходимость периодического регулирования натяжения ленты по мере её вытяжки, а достоинством — простота конструкции и компактность.

На конвейерах небольшой и средней длины до 80 м часто применяются винтовые натяжные устройства рис. Гидравлические и пневматические натяжные устройства на металлургических предприятиях практически не применяются. Усилие F нат , которое должно обеспечить натяжное устройство для перемещения натяжного барабана, при параллельных ветвях ленты равно.

Направление движения ленты изменяется с помощью отклоняющих устройств : концевых оборотных барабанов, отклоняющих барабанов и роликовых батарей. Отклоняющие барабаны применяются для холостой ветви конвейера, а также для рабочей ветви с однороликовыми опорами.

Регулирование скорости двигателей Д1 и Д2 осуществляется изменением скорости ПЧ с помощью редуктора Р с изменяемым передаточным отношением. Разрешение на пуск конвейеров дается операторами, следящими за работой конвейеров на наиболее ответственных участках. Последние подготовляют цепь пускового реле РП. При нажатии на кнопку Пуск срабатывает РП, которое включает контактор Л1.

Происходит однофазная синхронизация положения ПЧ, Д1 и Д2. Через выдержки времени маятниковые реле, встроенные в контакторы Л1 и Л2, последовательно включается Л2, отключается Л1 и включается ЛЗ. В качестве приводного двигателя используется асинхронный двигатель с фазным ротором мощностью до кВт В определенные часы суток при незначительном потоке пассажиров эскалатор может длительно работать практически вхолостую.

Схема электропривода конвейерных линий с согласованным движением. При повышении нагрузки она вновь включается на треугольник. Схема электропривода эскалатора метрополитена. В генераторном режиме спуска с полной нагрузкой двигатель загружен существенно меньше из-за механических потерь установки , чем при аналогичной нагрузке в режиме подъема.

Поэтому в режиме на спуск статорная обмотка двигателя всегда включена на звезду. Пуск двигателя осуществляется в функции времени с использованием маятниковых реле контакторов ускорения 1У—4У. Торможение — механическое.

Стало всё элеватор гафурийского района Нам

Считаю, что элеватор для системы теплоснабжения ответ

Устройство ленточного конвейера таково, что агрегат можно использовать во многих отраслях промышленности. Сейчас давайте пойдем дальше. Давайте рассмотрим основные преимущества, которыми обладает данный агрегат. Главный плюс ленточного конвейера заключается в том, что с его помощью можно транспортировать грузы на очень большое расстояние. В некоторых случаях длина грузонесущего органа может достигать километров.

Никакой другой конвейер не может быть таким длинным. Обусловлено это большим весом, сложной конструкцией и, что самое главное, высокой стоимостью оборудования. В случае с ленточным конвейером нет никаких проблем. Еще одно неоспоримое достоинство заключается в высокой производительности. В этом случае производительность может превышать тысяч тон в час.

Кроме того, ленточный конвейер относится к универсальным транспортирующим линиям. Обусловлено это тем, что можно перемещать самые различные грузы. Еще одно важное достоинство — возможность перемещения грузов в наклонном положении. С увеличением угла и длительности конвейера уменьшается его скорость. Стоит сказать о том, что есть и существенные недостатки, ограничивающие сферу применения транспортирующих устройств такого типа.

Основной минус — высокая цена ленты и роликов. Хотя тут многое зависит от назначения, а также технических характеристик материал, количество слоев и т. Еще один недостаток заключается в том, что барабан ленточного конвейера движет ленту при помощи трения. Это ограничивает угол подъема, поэтому он не может превышать 20 градусов.

Помимо этого, достаточно проблематично перемещать пылевидные грузы, которые в процессе движения могут частично улетучиваться и рассыпаться. Затруднительно работать и при слишком низких температурах, как и при слишком высоких. Термической воздействие изменят характеристики гибкой ленты, а также приводит к разрушению. Как было отмечено несколько выше, ЛК может работать при высоких скоростях. Это делает ленточный конвейер более производительным по сравнению с другими транспортирующими агрегатами.

Основная особенность эксплуатации заключается в том, что имеется возможность создания сложных маршрутов. К примеру, можно сделать сложную трассу с изгибами, горизонтальными и наклонными участками. Даже при тяжелых условиях эксплуатации перепады температур, высокая запыленность и т. В большинстве случае при правильном обслуживании можно четко предсказать период выхода тягового органа из строя.

Это позволяет эксплуатировать устройство без простоя. На сегодняшний день разработано огромное количество приводов, которые обеспечивали работу ЛК. При увеличении длины устанавливается несколько двигателей, которые обеспечивают нормальную эксплуатацию. При выходе одного привода, второй будет работать. В этом случае производительность хоть и понизится, но не будет простоя. Привод ленточного конвейера состоит из двигателя, редуктора и нескольких соединительных муфт.

В местах изгиба устанавливают роликовые или отклоняющие батареи, создающие плавный переход. Вся конструкция, вместе с приводом, монтируется на фундамент, который должен быть заложен предварительно. Приводная станция состоит из привода, а также загрузочной коробки, а та часть, где находится натяжное устройство и загрузочная воронка, именуется, как натяжная станция.

Между этими двумя станциями находится средняя часть конвейера, она выполнена из нескольких линейных секций. Последние состоят из одинаковых линейных секций, соединенных между собой болтами. А сейчас давайте поговорим о том, какие бывают ленточные конвейеры и в чем их принципиальное отличие. Тут есть несколько интересных моментов. Существуют некоторые признаки, по которым условно данные устройства можно разделить на несколько групп:. Стоит понимать, что, помимо этого, схема ленточного конвейера предусматривает использования различного тягового и грузонесущего органа.

Ленты бывают резинотканевыми, резинотросовыми, проволочными, а также стальными. Тип ленты выбирается исходя из того, в каких условиях она будет работать. К примеру, стальные тяговые органы применяются для работы при высоких температурах до градусов , точно так же, как и проволочные, которые могут транспортировать грузы при рабочей температуре градусов по Цельсию.

Отдельно нужно сказать несколько слов о транспортирующих устройствах, работающих под землей. Примечательно то, что схема ленточного конвейера такого типа несколько отличается. В несколько раз увеличивается степень надежности. Обусловлено это тем, что грузонесущий орган используется для транспортировки людей, а также тяжелых штучных грузов, и все это выполняется в стесненных условиях.

Привод, например, имеет два натяжных барабана, что позволяет сделать устройство не только более мощным, но и обеспечить достаточную надежность. На сегодняшний день популярность ленточных конвейеров постоянно растет. По этой простой причине постоянно разрабатываются все новые типы грузонесущих органов. В частности важно создавать высокопрочные термоустойчивые детали. К примеру, нужно увеличивать срок эксплуатации роликов, которые постоянно выходят их строя.

Можно говорить о том, что работа ленточного конвейера считается довольно дешевой. Если перемещать груз на расстояние до 30 км при помощи ЛК, то это будет куда экономичнее, нежели делать это автомобильным транспортом. Ленточный конвейер — это транспортирующий механизм непрерывного действия, в котором грузонесущий и тяговый орган представлен замкнутой бесконечной гибкой лентой. Лента движется благодаря силе трения ленты и приводного барабана, а вес конструкции и груза равномерно распределяется по стационарным роликоопорам.

B горной промышленности ленточными ковейерами перемещают полезные ископаемые и породы от места добычи по выработкам горных предприятий и для подъема их на поверхность с последующей транспортировкой к обогатительным фабрикам или на погрузочную площадку внешнего транспорта, a породу — в отвал. Ленточными конвейерами можно доставлять полезные ископаемые от горных предприятий непосредственно к потребителю. Это может быть уголь для теплоэнергоцентрали или руда на металлургический завод.

Простейшая кинематическая схема ленточного конвейера выглядит следующим образом :. Ленточный конвейер общего назначения построен на принципе, когда бесконечная гибкая лента, с ее рабочей и холостой ветвями, опираясь на роликовые опоры, огибает приводной и натяжной барабаны, расположенные по концам конвейера.

В конструкции коротких конвейеров, которые используют для транспортировки штучных грузов, часто рабочая ветвь ленты скользит по деревянному или металлическому настилу. Лента приводится в движение приводным барабаном. Необходимое натяжение сбегающая ветвь ленты получает от натяжного барабана с помощью натяжного устройства. Для погрузки сыпучего материала, который подлежит перемещению, используются загрузочная воронка, устанавливаемая обычно у концевого барабана в начале конвейера.

Материал разгружается с ленты двумя способами, это может быть разгрузка с приводного барабана и называется концевой или промежуточной, для чего используют передвижную разгрузочную тележку, либо стационарные плужковые сбрасыватели. Для направления потока доставленного к месту разгрузки материала используется разгрузочная коробка.

Чтобы очистить ленту с рабочей стороны от остатков груза устанавливают щетки из капрона или резины, либо неподвижный скребок. Установка очистного устройства крайне необходимо в тех случаях, когда возможно прилипание остатков транспортируемого материала на роликах холостой ветви и образование трудноудаляемой неровной корки, что приводит к неравномерному вращению роликов и ускоренному износу ленты.

Когда возникает необходимость очистки внутренней поверхности холостой ветви ленты от случайно попавших остатков груза, в районе натяжного барабана устанавливается дополнительный сбрасывающий скребок. Очищать ленту после приводного барабана необходимо с целью предотвращения осыпания прилипших частиц материала от вибрации, в результате чего под опорами холостой ветви возникают завалы, затрудняющие эксплуатацию конвейерной линии.

Составляющими звеньями привода ленточного конвейера являются электродвигатель 1 , зубчатоременная передача 2 , редуктор 3 , зубчатая муфта 4 , приводной барабан 5. Кинематическая схема привода ленточного конвейера построена на том, что асинхронный электродвигатель вращает с помощью ременной передачи быстроходный входящий вал цилиндрического редуктора. Входящий вал редуктора вращение передает на промежуточный вал при помощи косозубой передачи. В свою очередь промежуточный вал при помощи прямозубой зубчатой передачи вращает выходной вал редуктора.

С помощью компенсирующей зубчатой муфты крутящий момент от выходного вала редуктора передается к валу приводного барабана конвейера. Конструкция конвейера полностью зависит от типа применяемых лент. Если сравнить ленточный конвейер со стальной лентой одинакового назначения с конвейером общего назначения, схема будет отличаться от последних теми элементами конструкции, которые зависят от повышенной жесткости ленты. Также будут отличия и в конструкции барабанов у конвейеров со стальной лентой, они будут иметь большие размеры, ролики будут выполняться в форме дисков на одной оси, и другие отличия.

Когда конвейеры с проволочными лентами становится возможным применение опор, состоящих из горизонтальных роликов. На иллюстрации справа показан простой пятиуровневый конвейер в RISC -процессорах. Вертикальная ось — последовательные независимые инструкции, горизонтальная — время.

Зелёная колонка описывает состояние процессора в один момент времени, в ней самая ранняя, верхняя инструкция уже находится в состоянии записи в регистр, а самая последняя, нижняя инструкция — только в процессе чтения. Сам термин «конвейер» пришёл из промышленности, где используется подобный принцип работы — материал автоматически подтягивается по ленте конвейера к рабочему, который осуществляет с ним необходимые действия, следующий за ним рабочий выполняет свои функции над получившейся заготовкой, следующий делает ещё что-то.

Таким образом, к концу конвейера цепочка рабочих полностью выполняет все поставленные задачи, сохраняя высокий темп производства. Например, если на самую медленную операцию затрачивается одна минута, то каждая деталь будет сходить с конвейера через одну минуту.

В процессорах роль рабочих исполняют функциональные модули, входящие в состав процессора. Простейшая форма совмещения выполнения инструкций во времени была реализована в машине « Z3 » Конрада Цузе в году [2]. В проекте IBM Stretch были предложены термины «выборка» англ. Fetch , «декодирование» англ. Decode и «выполнение» англ. Execute , которые затем стали общеупотребительными. Многие современные процессоры управляются тактовым генератором. Процессор внутри состоит из логических элементов и ячеек памяти — триггеров.

Когда приходит сигнал от тактового генератора, триггеры приобретают своё новое значение, и «логике» требуется некоторое время для декодирования новых значений. Затем приходит следующий сигнал от тактового генератора, триггеры принимают новые значения, и так далее. Разбивая последовательности логических элементов на более короткие и помещая триггеры между этими короткими последовательностями, уменьшают время, необходимое логике для обработки сигналов. В этом случае длительность одного такта процессора может быть соответственно уменьшена.

Например, простейший конвейер RISC -процессоров можно представить пятью стадиями с наборами триггеров между стадиями:. Ситуации, называемые конфликтами конвейера [en] англ. Конфликты уменьшают реальное ускорение в производительности конвейерной обработки и могут вызвать необходимость остановки конвейера.

Для разрешения конфликта нужно, чтобы некоторые команды в конвейере могли продолжать выполняться, в то время как другие были задержаны. Существует три класса конфликтов [6]. Структурные конфликты возникают из-за конфликтов ресурсов, когда аппаратура не может поддерживать все возможные комбинации одновременно выполняемых команд [7]. Если какая-то комбинация команд не может быть поддержана, то говорят, что процессор имеет структурный конфликт. Наиболее часто структурные конфликты происходят, когда некоторый функциональный блок не полностью конвейеризован.

Например, некоторые процессоры совместно используют единый конвейер памяти для данных и команд. В результате, когда команда содержит обращение к памяти данных, она вступает в конфликт с обращением более поздней командой. Чтобы этот конфликт разрешался при обращении к памяти за данными, конвейер приостанавливается на один такт. В качестве альтернативы такому структурному конфликту разработчик мог бы обеспечить отдельное обращение к памяти команд либо путём разбиения кэша на отдельные кэш команд и кэш данных, либо используя множество буферов, называемыми буферами команд для хранения команд, однако, этого не делается во избежание увеличения стоимости блока [8].

Конфликты по данным возникают, когда зависимость команды от результатов предыдущей проявляется при совмещении команд в конвейере. Существует метод устранения конфликта по данным: форвардинг англ. К сожалению, не все потенциальные конфликты по данным можно обработать с помощью байпаса, в этом случае конвейер приостанавливается до разрешения конфликта.

Конфликты по управлению возникают при конвейерном выполнении условных передач управления и других команд, которые изменяют значение программного счетчика. Существует много способов обработки остановки конвейера , вызванных задержкой передачи управления, но для глубоких конвейеров в основном используются агрессивные средства [10] , такие как предсказания передач управления.

Бесконвейерная архитектура значительно менее эффективна из-за меньшей загрузки функциональных модулей процессора в то время, пока один или небольшое число модулей выполняет свою функцию во время обработки инструкций. Конвейер не убирает полностью время простоя модулей в процессорах как таковое и не уменьшает время выполнения каждой конкретной инструкции, но заставляет модули процессора работать параллельно над разными инструкциями, увеличивая тем самым количество инструкций, выполняемых за единицу времени, а значит, и общую производительность программ.

Процессоры с конвейером внутри устроены так, что обработка инструкций разделена на последовательность стадий, предполагая одновременную обработку нескольких инструкций на разных стадиях. Результаты работы каждой из стадий передаются через ячейки памяти на следующую стадию, и так — до тех пор, пока инструкция не будет выполнена.

Подобная организация процессора, при некотором увеличении среднего времени выполнения каждой инструкции, тем не менее, обеспечивает значительный рост производительности за счёт высокой частоты завершения выполнения инструкций. Не все инструкции являются независимыми. В простейшем конвейере, где обработка инструкции представлена пятью стадиями, для обеспечения полной загрузки, в то время, пока заканчивается обработка первой инструкции, должно обрабатываться параллельно ещё четыре последовательных независимых инструкции.

Если последовательность содержит инструкции, зависимые от выполняемых в данный момент, то управляющая логика простейшего конвейера приостанавливает несколько начальных стадий конвейера, помещая этим самым в конвейер пустую инструкцию «пузырёк» , иногда неоднократно, — до тех пор, пока зависимость не будет разрешена.

Существует ряд приёмов, таких, как форвардинг, значительно снижающих необходимость приостанавливать в таких случаях часть конвейера. Однако зависимость между инструкциями, одновременно обрабатываемыми процессором, не позволяет добиться увеличения производительности кратно количеству стадий конвейера в сравнении с бесконвейерным процессором.

Конвейер помогает не во всех случаях. Существует несколько возможных минусов. Конвейер инструкций можно назвать «полностью конвейерным», если он может принимать новую инструкцию каждый машинный цикл. Иначе в конвейер должны быть вынужденно вставлены задержки, которые выравнивают конвейер, при этом ухудшая его производительность.

Верхняя серая область — список инструкций, которые предстоит выполнить. Нижняя серая область — список инструкций, которые уже были выполнены. И средняя белая область является самим конвейером. Для разрешения конфликтов конвейера процессор вынужден задерживать обработку инструкции путём создания «пузырька» bubble в конвейере.

Прохождение пузырька через исполнительные устройства не сопровождается никакой полезной работой. Во втором такте обработка фиолетовой инструкции задерживается, и на стадии декодирования в третьем такте теперь находится пузырёк. Все инструкции, следующие «за» фиолетовой инструкцией, задерживаются на один такт, тогда как инструкции, находящиеся «перед» фиолетовой инструкцией, продолжают исполняться.

Очевидно, что наличие пузырька в конвейере даёт суммарное время исполнения в 8 тактов вместо 7 на схеме исполнения, показанной выше. Исполнительные устройства должны выполнять какое-то действие на каждом такте. Пузырьки являются способом создания задержки при обработке инструкции без прекращения работы конвейера.

При их выполнении не происходит полезной работы на стадиях выборки, декодирования, исполнения и записи результата. Они могут быть выражены при помощи инструкции NOP [11] [12] [13] ассемблера. Эта инструкция суммирует значения, находящиеся в ячейках памяти A и B , а затем кладет результат в ячейку памяти C.